Histone deacetylase 4 alters cartilage homeostasis in human osteoarthritis

نویسندگان

  • Jingwei Lu
  • Ye Sun
  • Qiting Ge
  • Huajian Teng
  • Qing Jiang
چکیده

BACKGROUND Osteoarthritis (OA) is the most common degenerative joint disorder, and a major cause of pain and disability among the elderly. Histone deacetylase 4 (HDAC4) has been shown to be a key regulator of chondrocyte hypertrophy during skeletogenesis. The aims of present study were to investigate the expression of HDAC4 in normal and OA cartilage and its potential roles during OA pathogenesis. METHODS The knee cartilage specimen (a total of 18, 12 female and 6 male) were obtained from primary OA patients undergoing total knee arthroplasty (TKA) and normal donors. By using immunohistochemistry staining, we detected the expression patterns of HDAC4 in OA cartilage and normal cartilage respectively. To assess the potential roles of HDAC4, HDAC4 expression in human chondrosarcoma cells (SW1353) was down-regulated by transfecting small interference RNA (siRNA), thereafter, cells were treated with IL-1β or TNF-α, and the expressions of several matrix-degrading enzymes and anabolic factors were examined by using quantitative PCR. RESULTS The expression of HDAC4 was observed in the OA cartilage, whereas it was barely detected in the normal cartilage. The extent of HDAC4 expression had a statistically negative correlation with OA severity. We further explored that the reduction of HDAC4 level led to a significant repression of proinflammation cytokines induced up-regulated expressions of matrix-degrading enzymes (MMP1 (Matrix metalloproteinase 1), MMP3 (Matrix metalloproteinase 3) , MMP13 (Matrix metalloproteinase 13), ADAMTS4 (aggrecanase 1) and ADAMTS5 (aggrecanase 2)) in SW1353 in vitro. Moreover, knockdown of HDAC4 inhibited the expression of some anabolic genes (such as aggrecan). CONCLUSIONS In this study, our findings suggest that the abnormal expression of HDAC4 in osteoarthritic cartilage might be implicated in promoting catabolic activity of chondrocyte, which is associated with OA pathogenesis. Thus, our findings give a new insight into the mechanism of articular cartilage damage, and indicate that HDAC4 might be a potential target for the therapeutic interventions of OA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HDACi and Nrf2: not from alpha to omega but from acetylation to OA

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is probably the most important ubiquitously expressed little protein that you have never heard of. Discovered more than 20 years ago, it is now known as a master regulator of redox homeostasis, controlling a plethora of cytoprotective phase II anti-oxidant enzymes. Regulation of gene expression by histone acetyltransferases and histone deacetyl...

متن کامل

Decreased histone deacetylase 4 is associated with human osteoarthritis cartilage degeneration by releasing histone deacetylase 4 inhibition of runt-related transcription factor-2 and increasing osteoarthritis-related genes: a novel mechanism of human osteoarthritis cartilage degeneration

INTRODUCTION To investigate if decreased histone deacetylase 4 (HDAC4) is associated with human osteoarthritis (OA) cartilage degeneration by releasing HDAC4 inhibition of runt-related transcription factor-2 (Runx2) resulting in increase of OA cartilage degeneration-related genes. METHODS The mRNA and protein levels of HDAC4, Runx2, matrix metalloproteinase (MMP)-13, Indian hedgehog (Ihh) and...

متن کامل

Mechanical and IL-1β Responsive miR-365 Contributes to Osteoarthritis Development by Targeting Histone Deacetylase 4

Mechanical stress plays an important role in the initiation and progression of osteoarthritis. Studies show that excessive mechanical stress can directly damage the cartilage extracellular matrix and shift the balance in chondrocytes to favor catabolic activity over anabolism. However, the underlying mechanism remains unknown. MicroRNAs (miRNAs) are emerging as important regulators in osteoarth...

متن کامل

Sulforaphane Represses Matrix-Degrading Proteases and Protects Cartilage From Destruction In Vitro and In Vivo

OBJECTIVE Sulforaphane (SFN) has been reported to regulate signaling pathways relevant to chronic diseases. The aim of this study was to investigate the impact of SFN treatment on signaling pathways in chondrocytes and to determine whether sulforaphane could block cartilage destruction in osteoarthritis. METHODS Gene expression, histone acetylation, and signaling of the transcription factors ...

متن کامل

Histone deacetylase-4 and histone deacetylase-8 regulate interleukin-1β-induced cartilage catabolic degradation through MAPK/JNK and ERK pathways

Interleukin-1β (IL-1β)-induced inflammatory response is associated with osteoarthritis (OA) and its development. Histone deacetylase (HDAC) may be involved in regulating this pathogenesis, but the mechanism has yet to be elucidated. The aim of the present study was to investigate the mechanism underlying the regulation of IL‑1β‑stimulated catabolic degradation of cartilage by HDAC. An in vitro ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014